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ABSTRACT

This study explores the use of Scirpus grossus for phytoremediation of ex-mining lake water, 
offering a potential low-cost alternative to conventional wastewater treatment. The focus is on 
removing contaminants such as total iron, total nitrate, total sulfate, total phosphorus, electrical 
conductivity, chemical oxygen demand, turbidity, and pH. Over 28 days, the ex-mining lake water 
was treated with S. grossus to assess contaminant removal, with the results analyzed using a 
mathematical model in Microsoft Excel. The model simulated exponential reductions in pollutants 
and increases in pH, with absorption coefficients calculated for each parameter. The study found 
that S. grossus effectively reduced contaminants, with the most significant removal of total iron at 
95.45%. The pH of the water increased from 2.61 (acidic) to 6.29 (neutral), improving its suitability 
for aquatic life. The predicted removal rates closely matched the observed data, suggesting that 
the model is reliable for forecasting phytoremediation outcomes. Overall, the study confirms that 
S. grossus is a highly effective species for cleaning ex-mining lake water, offering a sustainable 
and cost-effective solution for industrial wastewater treatment. The findings encourage further 
research into the scalability, long-term effectiveness, and integration of this technique with other 
wastewater management strategies.

Keywords: Abandoned mine lake water, mathematical 
computing, plant-based remediation, Scirpus grossus, 
simulation

INTRODUCTION

Phytoremediation, using plants to remove, 
degrade, or stabilize contaminants from 
soil and water, has emerged as a promising, 
eco-friendly approach for environmental 
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cleanup. This technique leverages the natural abilities 
of plants and their associated microorganisms to absorb, 
transform, and detoxify pollutants, including heavy metals, 
radionuclides, and organic compounds (Almaamary et 
al., 2017). Despite its potential, the practical application 
of phytoremediation poses several challenges, including 
variability in contaminant removal efficiency, environmental 
conditions, and plant species performance. Mathematical 
modeling has become invaluable in optimizing and 
predicting the outcomes of phytoremediation efforts to 
address these complexities (Tangahu et al., 2022).

S. grossus (locally known as Rumput Menderong), as 
shown in Figure 1, holds great promise as a phytoremediation 
agent for contaminated water bodies, particularly those 
affected by industrial activities. Its robust growth, high 
tolerance to pollutants, and ability to enhance microbial 
degradation of contaminants make it a valuable tool in 

Figure 1. Scirpus grossus (Rumput 
Menderong) (Tangahu et al., 2015)

sustainable and effective water quality management (Almaamary et al., 2022). As research 
continues to explore and optimize the use of S. grossus in phytoremediation, this plant may 
become an integral part of efforts to restore and protect our water resources.

Sordes et al. (2023) reported that mathematical modeling in phytoremediation involves 
the development of theoretical frameworks and computational algorithms to simulate the 
interactions between plants, contaminants, and environmental variables. These models 
can predict the behavior of contaminants in different scenarios, evaluate the effectiveness 
of various plant species, and optimize the design and management of phytoremediation 
projects. By integrating data from laboratory experiments, field studies, and environmental 
monitoring, mathematical models provide insights into the dynamics of phytoremediation 
processes, allowing for more precise and efficient remediation strategies (Alvarez-Vazquez 
et al., 2019).

The use of mathematical models offers several advantages in phytoremediation. They 
can reduce the need for extensive and costly field trials by simulating different remediation 
scenarios, thus saving time and resources. According to Darajeh et al. (2016), models can 
also identify the most effective plant species for specific contaminants and environmental 
conditions, enhancing the overall efficiency of phytoremediation. Furthermore, they help 
understand the complex interactions between plants and contaminants, providing a deeper 
insight into pollutant uptake, transformation, and stabilization mechanisms.

Kamalu et al. (2017) mentioned that mathematical modeling can play a crucial role in 
managing and mitigating environmental risks in the context of contaminated sites, particularly 
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those affected by mining activities. For instance, ex-mining lake waters often contain high 
concentrations of heavy metals and other pollutants, posing significant ecological and human 
health risks. Modeling the phytoremediation processes in such environments can help predict 
the long-term behavior of contaminants, assess the potential impact of remediation activities, 
and design effective remediation plans (Simha & Achyuth, 2015).

Jaskulak et al. (2020) stated that mathematical modeling is crucial in optimizing and 
predicting the effectiveness of phytoremediation processes, providing valuable insights into 
the interactions between plants, contaminants, and environmental conditions. However, 
many limitations in this field still hinder the full realization of phytoremediation’s potential. 
Therefore, it is essential to explore the various aspects of mathematical modeling in 
phytoremediation, including model development, validation, and application in real-world 
scenarios, as studied by Shi et al. (2023). By harnessing the power of computational 
techniques to develop a suitable predictive system, we can enhance the effectiveness of 
phytoremediation and contribute to sustainable environmental management. Mathematical 
modeling in phytoremediation lies in its ability to enhance the efficiency, precision and 
applicability of phytoremediation techniques. The models can simulate contaminant uptake, 
translocation, and degradation over time, providing accurate remediation rates and time 
frame predictions.

Figure 2. CW setup dimension

MATERIALS AND METHODS

Experimental Setup 

Seedling S. grossus collected from the 
natural pond at Bukit Besi was thoroughly 
washed with tap water to remove any surface 
contamination and then placed in a plastic 
vessel containing tap water. Two constructed 
wetland (CW) chambers were set up for two 
replicates, each approximately 50 cm in 
length (L), 35 cm in width (W), and 34 cm in 

50 cm

34
 c

m

13 cm

river sand

lake water

13 cm

depth (D), as shown in Figure 2. Each chamber was filled with approximately 13 cm height 
of river sand and lake water (approximately 28 liters). The CWs were placed in a greenhouse 
exposed to ambient conditions but shielded from direct sunlight to prevent water evaporation. 
Twelve plants were allowed to grow in each tub for 28 days (Sidek et al., 2020).

Plant Physical Observation

Plant physical observation was also recorded on each monitoring date, as reported by Ismail 
et al. (2017). Visual stress symptoms, including chlorosis, wilting, necrosis and stunted 
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growth, were observed on each of the sampling days. This is crucial for assessing plant 
health, growth and tolerance during remediation.

Lake Water Analysis

Analysis of total iron (TI), total nitrate (TN), total sulfate (TS), total phosphorus (TP), 
electrical conductivity (EC), chemical oxygen demand (COD), turbidity and pH. of the 
lake water drawn from experimental treatments was done on 0th, 7th, 14th, 21st and 28th of 
sampling days using standard methods outlined in APHA11 (Kumari et al., 2015; Kutty 
& Al-Mahaqeri, 2016). All selected parameters considered the possible characteristics of 
contaminants in the ex-mining lake water. 

Mathematical Modelling Hypothesis

The parameter variation is attributed to the phytoremediation of ex-mining lake water by 
S. grossus, which contains high organic and inorganic compounds. This study assumes 
that the concentration of pollutants and/or effectiveness decreases over time as aquatic 
plants decrease inorganic and some organic compounds from wastewater (Jyotsna et al., 
2015). However, once equilibrium is reached (when the plants’ capacity for pollutant 
sequestration is maximized), the plants no longer contribute to pollution removal—noted 
that the parameter variation due to the phytoremediation of ex-mining lake water is limited 
and reaches its peak on the first day of the experiment.

Phytoremediation Prediction Model 

According to Jyotsna et al. (2015), let P (phytoremediation parameter) be at the time of 
the initial day of the experiment for the phytoremediation potential of the S. grossus. The 
rate of change in P from the first day of the experiment until the plants reach equilibrium 
is directly proportional to P; then,

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

𝛼𝛼𝛼𝛼 =  𝜇𝜇 𝛼𝛼    

ln𝛼𝛼 =  𝜇𝜇 𝑑𝑑 + 𝐶𝐶    

ln𝛼𝛼0   =  𝜇𝜇 0 + 𝐶𝐶    

 

Or 𝐶𝐶 =  ln𝛼𝛼0 

     [1]

Where μ is a constant. Integrating Equation 1.
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

𝛼𝛼𝛼𝛼 =  𝜇𝜇 𝛼𝛼    

ln𝛼𝛼 =  𝜇𝜇 𝑑𝑑 + 𝐶𝐶    

ln𝛼𝛼0   =  𝜇𝜇 0 + 𝐶𝐶    

 

Or 𝐶𝐶 =  ln𝛼𝛼0 

     [2]

Where C is the constant of integration. To determine the value of C, apply the initial 
condition to Equation 2 by setting t=0 on the starting day of the experiment, where P will 
be at its maximum value, denoted as P₀. Then,

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

𝛼𝛼𝛼𝛼 =  𝜇𝜇 𝛼𝛼    

ln𝛼𝛼 =  𝜇𝜇 𝑑𝑑 + 𝐶𝐶    

ln𝛼𝛼0   =  𝜇𝜇 0 + 𝐶𝐶    

 

Or 𝐶𝐶 =  ln𝛼𝛼0 
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Or 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

𝛼𝛼𝛼𝛼 =  𝜇𝜇 𝛼𝛼    

ln𝛼𝛼 =  𝜇𝜇 𝑑𝑑 + 𝐶𝐶    

ln𝛼𝛼0   =  𝜇𝜇 0 + 𝐶𝐶    

 

Or 𝐶𝐶 =  ln𝛼𝛼0 

Putting the value of C in Equation 2, 

ln𝛼𝛼 =  𝜇𝜇𝑑𝑑 +   ln𝛼𝛼0 

Or ln𝛼𝛼 −  ln𝛼𝛼0 = 𝜇𝜇𝑑𝑑  

Or ln(𝛼𝛼/𝛼𝛼0 ) = 𝜇𝜇𝑑𝑑 

Or 𝛼𝛼/𝛼𝛼0 = 𝑒𝑒𝑒𝑒𝑑𝑑( 𝜇𝜇𝑑𝑑 )  

Or 𝛼𝛼 = 𝛼𝛼0exp(𝜇𝜇𝑑𝑑)     [3]

Now, when the plant reaches equilibrium after 28 days, the change in P with respect 
to t approaches zero.

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑  

 = 0 

𝛼𝛼 = 𝑏𝑏 

𝛼𝛼 =  𝛼𝛼0exp(𝜇𝜇𝑑𝑑) (before reaching steady-state)  

    = 𝑏𝑏 (after reaching steady-state)�

This indicates that, 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑  

 = 0 

𝛼𝛼 = 𝑏𝑏 

𝛼𝛼 =  𝛼𝛼0exp(𝜇𝜇𝑑𝑑) (before reaching steady-state)  

    = 𝑏𝑏 (after reaching steady-state)�

      [4]

Where b is a constant. Now, merging Equations 3 and Equation 4,

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑  

 = 0 

𝛼𝛼 = 𝑏𝑏 

𝛼𝛼 =  𝛼𝛼0exp(𝜇𝜇𝑑𝑑) (before reaching steady-state)  

    = 𝑏𝑏 (after reaching steady-state)�  [5]

For the condition before reaching equilibrium, Equation 3 should be applied and 
denoted as Equation 5 to find the P values at the interval. At the same time, P is equal to 
b (constant) after reaching equilibrium.

Now consider t at an identical interval, let these be 𝑑𝑑1,𝑑𝑑2,𝑑𝑑3,….., 𝑑𝑑𝑁𝑁 . 

𝜇𝜇 = { ln( 𝛼𝛼𝑖𝑖  / 𝛼𝛼0} / 𝑑𝑑𝑖𝑖  ,  where 𝑖𝑖 = 1, 2, 3, …𝑁𝑁 

𝜇𝜇 =  
∑ 𝜇𝜇𝑖𝑖𝑁𝑁

1

𝑁𝑁
 

𝑑𝑑1,𝑑𝑑2,𝑑𝑑3,….., 𝑑𝑑𝑁𝑁 . 

𝜇𝜇 = { ln( 𝛼𝛼𝑖𝑖  / 𝛼𝛼0} / 𝑑𝑑𝑖𝑖  ,  where 𝑖𝑖 = 1, 2, 3, …𝑁𝑁 

𝜇𝜇 =  
∑ 𝜇𝜇𝑖𝑖𝑁𝑁

1

𝑁𝑁
 

𝑑𝑑1,𝑑𝑑2,𝑑𝑑3,….., 𝑑𝑑𝑁𝑁 . 

𝜇𝜇 = { ln( 𝛼𝛼𝑖𝑖  / 𝛼𝛼0} / 𝑑𝑑𝑖𝑖  ,  where 𝑖𝑖 = 1, 2, 3, …𝑁𝑁 

𝜇𝜇 =  
∑ 𝜇𝜇𝑖𝑖𝑁𝑁

1

𝑁𝑁
 

The activity can be predicted by substituting the value of μ into Equation 3 (Kumar et 
al., 2005).

Mathematical Model Application

The method previously discussed was used to apply the model to the observed data. 
Observations were taken at three equidistant time intervals: on the 0th, 7th, 14th, 21st, 
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and 28th days. The value of μ was calculated using these observations, and the predicted 
value of P for S. grossus was compared with the observed values (Figures 3–10) (Jyotsna 
et al., 2015). The prediction simulation task was performed using the developed predictive 
system in Microsoft Excel.

RESULTS AND DISCUSSION

Plant Growth Observation

The plants show symptoms of yellowing leaves, root impairment, brown spots, and reduced 
metabolic activity. According to Sidek et al. (2018), this initial plant behavior (up to 28 days) 
for nutrient absorption from the lake water could be due to the plants reaching their carrying 
capacity, as all binding sites in the root zone were occupied. Additionally, the high elemental 
concentration in the plant bodies may have negatively impacted plant growth, resulting 
in relatively poor growth beyond 28 days (Table 1). This stunted growth likely halted the 
absorption of organic and inorganic contents from the lake water (Ismail et al., 2020).

Table 1
Scirpus grossus physical observation 

Observation day Initial day (0th day) Final day (28th day)
Observation 
result

All healthy A few withered and dead

Lake Water Parameters Analysis 

All parameters showed an exponential decrease in P of S. grossus from the start of the 
experiment up to 28 days, after which the decrease became negligible until the experiment’s 
conclusion. A comparison between the estimated and observed values of a given parameter 
of the lake water (Figures 3–10) shows minimal variation. This finding strongly agrees with 
previous studies by Jyotsna et al. (2015) and Kumar et al. (2005), evident from the values 
of μ and the percentage reduction of different parameters with respect to the observed and 
estimated values. However, some inconsistency between observed and estimated values 
can be attributed to the subjectivity inherent in the experiment (Darajeh et al., 2016). 
Additionally, as the duration of phytoremediation increases, the pH values rise exponentially 
towards neutral. 
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Figure 3. Comparison between the estimated value 
and observed value of TI

Figure 4. Comparison between the estimated value 
and the observed value of TN

Figure 5. Comparison between the estimated value 
and the observed value of TS

Figure 6. Comparison between the estimated value 
and the observed value of TP

Figure 7. Comparison between the estimated value 
and the observed value of EC

Figure 8. Comparison between the estimated value 
and the observed value of COD
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Mathematical Modelling

The trend of contaminant reduction is 
dependent on the value of μ (equilibrium 
constant) calculated using the mathematical 
model and the developed predictive system 
as shown in Table 2 as the highest value is 
0.19358 (R=95.45%) for TI and the lowest 
is 0.02949 (R=32.89%) for EC neglecting 
the (-ve) signs which exhibit decrement 
values. This indicates that with extended 
phytoremediation, the phytoremediator 
reaches an equilibrium level of absorption 
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Figure 9. Comparison between the estimated value 
and observed value of turbidity

Figure 10. Comparison between the estimated value 
and observed value of pH

Table 2 
Calculated mean µ for eight physico-chemical 
parameters of Scirpus grossus 

Parameters Removal/Reduction µ
TI 95.45% -0.19358
TN 78.82% -0.09256
TS 82.67% -0.07106
TP 91.04% -0.12235
EC 32.89% -0.02949
COD 43.06% -0.05247
Turbidity 70.00% -0.06525
pH +3.68 0.04591

and/or degradation of the pollutants in the lake water, resulting in a halt in the reduction 
of the studied parameters beyond that point (Wang & Delavar, 2024). Figure 11 displays 
the window of the phytoremediation predictive system, which consists of the observed 
values, estimated values and contaminants removal graphs developed in Microsoft Excel.

Mathematical and computing techniques offer several advantages in phytoremediation 
technology, enhancing the efficiency, accuracy, and effectiveness of remediation processes. 
The advantages of this approach are beneficial for optimized plant selection, optimized 
plant selection, and cost and time efficiency (Jaskulak et al., 2020). Mathematical 
models can predict which plant species are most effective for specific contaminants, 
helping to select the best candidates for phytoremediation based on factors like growth 
rate, tolerance, and uptake capacity. Computational techniques enable the simulation of 
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different scenarios, predicting the outcomes of phytoremediation efforts under various 
conditions. This helps in planning and optimizing remediation strategies. By simulating 
different phytoremediation strategies, mathematical models can identify the most cost-
effective and time-efficient approaches, reducing the need for extensive field trials, as 
reported by Mohammadi et al. (2019).

As a practical technique for further research, an integrated phytoremediation model 
should account for the influence of agronomic practices, soil amendments, and native plants 
(Alvarez-Vazquez et al., 2019). In real-world settings, industries and environmental agencies 
can use phytoremediation mathematical models to optimize the selection of plant species, 
predict pollutant uptake, scale remediation efforts, and ensure long-term sustainability. 
Proper calibration, monitoring, and consideration of site-specific conditions (like soil type, 
climate, and contaminant type) are essential for successfully implementing these models. 
With the right combination of data, models, and field validation, phytoremediation can 
become an effective and cost-efficient strategy for addressing environmental contamination 
(Jaskulak et al., 2020).

According to Wang and Delavar (2024), phytoremediation modeling is valuable for 
predicting and optimizing environmental cleanup using plants. However, its limitations can 
impact its accuracy, applicability, and scalability in real-world settings. These limitations 
stem from the inherent complexity of biological, ecological, and environmental systems. 

Figure11. Phytoremediation predictive system
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Phytoremediation mathematical modeling can be highly applicable when certain conditions 
are met, ensuring that predictions and recommendations are robust and realistic. These 
conditions include access to site-specific data, knowledge of contaminant-plant interactions, 
the environmental and climatic context, and a solid understanding of soil-plant feedback 
mechanisms (Jaskulak et al., 2020). Additionally, the model should consider the economic 
feasibility and practical constraints of applying phytoremediation on a large scale, as well 
as include tools for uncertainty analysis to ensure that decision-makers can manage risks 
effectively. When these conditions are met, phytoremediation models can be a powerful tool 
for optimizing remediation strategies, ensuring sustainable and cost-effective environmental 
cleanup.

CONCLUSION

Based on the current investigation, the proposed model effectively predicts the 
phytoremediation potential of S. grossus for ex-mining lake water and similar industrial 
effluents over time. TI parameter shows the highest percentage removal at R=95.45% 
with µ value of -0.19358. This model is particularly useful for the fast observation of 
industrial pollution treatment. The mathematical model demonstrates a reasonably accurate 
remediation method for industrial wastewater pollution using plants such as S. grossus. This 
approach could be effectively utilized to remediate the effects of ex-mining lake water, at 
least on an experimental basis.
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